
Adaptive Driver Model for Velocity Profile Prediction

ADRIENN DINEVA
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Óbuda University

Institute of Automation
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Abstract: Modern driver assistant systems are responsible for maintaining safe and reliable operation and reducing
the energy consumption in electric vehicles since these systems have to possess the capability to predict the ex-
pected load. Drive cycles can not fully coincide with real driving behaviour and a one-time test does not reflect the
overall traffic and road conditions. The Interval-Type-2 (IT2) Fuzzy System is proved to be a higly efficient tool
for modeling uncertainties. In contrast to conventional Type-1 fuzzy modeling an IT2 Fuzzy System has the ability
to deal with flexible the various types of uncertainties and modeling errors simultaneously and approximates better
real-life systems. This paper presents an Adaptive IT2 Fuzzy System for velocity profile forecasting from the mea-
sured velocity and acceleration data. The adaptive driver model is based on Interval Type-2 fuzzy sets. Histograms
of input features are used for generating membership functions which parameters are adaptiveley tuned according
to the driver’s behaviour. Simulation results validate the efficiency and demonstrate that the proposed method is a
viable alternative of conventional time series prediction.

Key–Words: Interval Type-2 Fuzzy System (IT2FS), adaptive fuzzy model, driver model, driving cycle, velocity
profile, driver assistant system, time series prediction, intermittent operation, electric vehicles, intelligent systems

1 Introduction

Modern electric drive systems require more sophisti-
cated monitoring and diagnosis methods for determin-
ing the expected life-time and reliability. Recently,
continuous assessment of the electrical condition of
electrical machines and future energy demand predic-
tion have become increasingly important. The energy
demand is influenced by the operation mode, typically
driving cycles give recommendations for the system
design however they do not provide precise informa-
tion on the expected intermittent operation and can
not be applied directly in an intelligent energy man-
agement and driving assistance system. The base the-
ory of predicting future values of a time series cov-
ers a range of disciplines. The main goal of time se-
ries analysis is to forecast future values of the series,
formally to determine the time series v(t + 1) from
its past data v(t, t − 1, t − 2, ..., t − (n − 1)). Var-
ious forecasting methods are exist [1], however the
choice of the type of the model to develop involves
trade-offs between time, computation costs and de-
sired forecast precision. Data-driven approaches are
based on data collected by on-line measures gathered
with sensors in order to approximate and track fea-
tures for revealing and forecasingt the global behav-

ior of a system that leads to its deeper understanding.
Data-based techniques can be separated into two cat-
egories. The statistical methods, such as multivari-
ate statistical methods, linear and quadratic discrimi-
nators require quantitative measurements and the re-
sult is a stochastic estimation of the future state [2].
Artificial intelligence (AI) and Soft Computing tech-
niques (fuzzy and neural network-based models, etc.)
are found to be highly efficient due to their flexibil-
ity, robustness and easy interpretability. Especially in
cases where the problem to be solved is highly non-
linear or when only partial, uncertain and/or inaccu-
rate data is available. Soft Comupting methods are
particularly fruitful also in situations which require
data fusion technology to combine and propagate in-
formation received from various objects. Recent re-
search activities in forecasting with soft computing
techniques suggest various approaches, for example
[3] presents a hybrid methodology that combines suc-
cesfully artificial neural networks with autoregressive
moving average model.
Fuzzy logic is an efficient Soft Computing tool that
allows a system to reason with uncertainty [4]. In real
world situations the numerical data may be noisy, in-
consistent and incomplete and the linguistic informa-
tion is imprecise. A fuzzy inference system is based
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on a set of if-then rules defined over fuzzy sets, which
generalize the traditional set theory by introducing a
membership degree to be any value between 0 and 1.
Fuzzy reasoning systems are widely applied in prac-
tice in the fields of multiple criteria decision mak-
ing, computer vision, control engineering, diagnos-
tics, etc, (see, for e.g. [5]). The knowledge that is
used to build these fuzzy rules is uncertain. Such
uncertainty leads to rules whose antecedents or con-
sequents are uncertain, which translates into uncer-
tain antecedent or consequent membership functions
Type-1 fuzzy systems. Type-2 fuzzy sets were in-
troduced by Zadeh as an extension of the classical
Type-1 fuzzy sets [6]. A Type-2 fuzzy set is char-
acterized by a fuzzy membership function (MF). In
contrast to Type-1 fuzzy sets, where the membership
grade is a crisp number, a membership grade of a
Type-2 set is a fuzzy set. The main advantages of
these sets that they allow directly managing uncer-
tainty about the membership grades themselves [7].
Type-1 fuzzy sets used in conventional fuzzy systems
cannot fully handle the uncertainties may present in
complex, dynamically changing or latest real-world
intelligent systems. For instance, when linguistic in-
formation does not provide any information about the
shapes of membership functions any available infor-
mation about the linguistic or numerical uncertainty
can be incorporated in the Interval Type-2 Fuzzy Sys-
tems (IT2FS) [8][9]. Therefore fuzzy sets are capable
of capturing the uncertainty/imprecision in time-series
prediction in comparision to other forecasting meth-
ods. However, in spite of all the benefits that IT2FSs
could provide only few paper can be found and their
use is not widespread yet [10][11][12][13].
Recent developments concerning driver modeling and
personalized drive cycle prediction apply a variety of
mathematical tools. For instance, paper [14] focuses
on the development of a prediction system consisting
of a combined driver and vehicle control loop in a
a hybrid hydraulic truck. In paper [15] an iterative
learning control is presented for vehicle speed follow-
ing in driving cycle simulations. A neural network
based solution is shown by the authors of study [16]
which is used for identifyng the type of driving cycle.
A Hidden Markov Model of driving cycle is proposed
in [17], with the purpose of realizing the driving pat-
tern in hybrid vehicles with fix routes. There is a con-
siderable amount of literature on driving cycle anal-
ysis and recognition, however most of them rely on
driving cycle standards [18][19][20][21][22].
This paper is organized as follows: Sectionc2 gives a
brief summary on the driving cycles and IT2FS and
outlines the new methodology for velocity profile pre-
diction reflecting individual driving style. The de-
scribed forecasting method may serve as a basis of in-

telligent energy and condition management system in
EVs [23] [24]. The advantage of the proposed method
is that the IT2 fuzzy modeling allows dealing with the
uncertainties of the driver behaviour and uncertainties
due to measurements noises, traffic situations, etc., si-
multaneously. The IT2FS employs a Mamdani-type
IT2 fuzzy reasoning system in which the fuzzy mem-
bership functions are obtained directly from real driv-
ing data [25]. The adaptive data-driven tuning allows
precise forecasting and catching the individual driv-
ing style. Simulation results provided in Section 4
support the applicability and efficiency of the IT2FS
based prediction model. Finally, the main findings are
concluded in Section 4.

2 Prediction of Velocity Profile based
on IT2FS

2.1 Driving Cycles

In practice the driving profile is complicated, com-
plex and consists of a series of frequent accelerations
and regenerative breaking events. The typical val-
ues collected by sensors and GPS differ from values
measured in laboratory test benches and requires the
appropriate preprocessing. Two main approaches of
standard driving cycles are distinguished. The New
European Driving Cycle (NEDC) and Emission Test
Cycles (ECE) composed of constant acceleration and
decelerations values that are alternating. Such cy-
cles are referred to as modal or polygonal [26]. For
instance, the NEDC gives references for the Euro-
pean urban driving environment which has the average
speed of 18 [km/h]. Its disadvantage is that it does
not take into account the driving on highway which is
a significant part of the vehicle’s life cycle. Since from
year 2000 the NEDC has been extended with the hig-
way driving cycles (EUDC - Extra Urban Driving Cy-
cle). The NEDC consists of four urban and one high-
way cycles, the total distance is 11 [km], total time is
1200 [s] and the average speed is 32, 5 [km/h], max-
imum speed is 120 [km/h]. The other type is closer
to the real speed profile, more dynamic than polygon
models and composed from sudden accelerations and
slowdowns since it reflects better the velocities ac-
cording to the road conditions. The North American
drive cycles belonging to the latter have different stan-
dards, such as the FTP-72 (Federal Test Procedure)
driving cycle which simulates urban transport on 7.5
miles with frequent braking effects (see, Figure 1). Its
average speed is 91, 2 [km/h]. The FTP-72 driving
cycle consists of a 505 [s] and a 864 [s] long periods.
During the second period the measurement is inter-
rupted by a 10 [s] no load operation.
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Figure 1: FTP Drive Cycle

The FTP-75 is the extension of the FTP-72 driv-
ing cycle by added a 505 [s] duration with hot start.
Though the driving cycles are originally created as
a reference point for fossil fuelled vehicles, the re-
cent recommendations are also used to estimate the
travelled range by electrical vehicles and are capable
for calculating and predicting energy demand, opera-
tional indicators, etc.

2.2 Interval Type-2 Fuzzy Systems
In this section we provide a brief summary on Interval
Type-2 Fuzzy Systems. The main distinction between
Type-1 and Type-2 fuzzy systems is associated with
the character of the applied fuzzy set while the inher-
ent principle is the same. The IT2 fuzzy membership
function for discrete universe of discourse x and u is
formulated as follows [11]:

Ã =
∑
x∈X

∑
u∈J

µÃ(x, u)/(x, u), (1)

in which Jx ⊆ [0, 1] denotes the first membership
function of x. In case of µÃ(x, u) = 1,∀u ∈ Jx ⊆
[0, 1] it is an interval type membership function. Ac-
cordingly the membership grade of each element of
an IT2 fuzzy set is an interval. Uncertainty is repre-
sented by the interval (commonly referred to as the
footprint of uncertainty (FOU)) which is bounded by
the upper membership function (UMF) and the lower
membership function (LMF). Both of them are Type-1
functions. The LMF, i.e. the secondary function de-
fines the possibilities of the first function.
The structure of the IT2FS system is displayed in Fig.
2. It can be observed, that it is equivalent with the con-
ventional fuzzy system. Only the defuzzification pro-
cess differs which contains a type reducer block that
reduces the IT2 output set to a Type-1 set before per-
forming a defuzzification method. Detailed descrip-
tion can be found, for instance in [12][13].

Figure 2: IT2 Fuzzy System

2.2.1 Membership Function Generation from
Training Data

The determination of the suitable shape of member-
ship function from data is still a challenging task and
is the key issue in the application of fuzzy set theory.
There is still considerable lack regarding the appro-
priate function generation technique even though the
applied membership function has a significant impact
on the result. Additionally its determination may
limited by the available training/measurement data
and the kind of application. In the literature various
efforts are made to develop methods to estimate
membership functions [27].
Most of the decision-making problems involve fuzzy
sets that are based on imprecise, context-sensitive
categories rather than concrete quantifiable values
associated with the formulated problem. Assigning
values to the imprecise categories requires the em-
ployment of techniques of the theory of measurement
and scaling. Determination of membership functions
based on perception include different methods, such
as the likelihood approac and relative preference
method and the parametric operators are considered
suitable also [28][29]. The heuristic membership
generating methods are usually applied in rule-based
pattern recognition tasks because these heuristic func-
tions can well approximate certain spatial relations
or properties [30][31]. These are usually piecewise
linear functions. In spite of their easy implementabil-
ity the heuristic methods have several drawbacks;
since these are tailored to a given problem, they work
well only for problems for which they are intended;
functions are not flexible enough to model different
data, parameters should be maintained by experts.
Other approaches are based on nearest neighbor tech-
niques. The membership generation techniques using
the rules of K-means or Fuzzy K-means methods
are efficient when a priori probabilities and class
conditional densities are unknown [32]. Furthermore
various soft-computing techniques, such as neural
networks can be applied.
A wide set of membership generating methods are
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apply the histograms of the data as their input [33]. In
this case the features provide information regarding
the distribution of input feature values. By assigning
n-dimensional attribute vectors for each class allows
constructing a multidimensional histogram. After, the
histogram can be approximated by the combination
of various parametric fuzzy operators. Its implemen-
tation and tuning is easy once the proper training data
is accessible. Since we have found this approach
suitable for driver behaviour modeling.

2.3 IT2 System for Modeling Driver Be-
haviour

The behaviour of the driver may contain patterns re-
lated to the individual driving style, however may in-
fluenced by various external effects from the dynami-
cally changing environment.
At first we predefine IT2 sets using averaged real
driver data sets as training data obtained from [25]
in urban driving environment. 80 percent of the data
is used for training and the remaining is for vali-
dation. The initial data consisted of approximately
70000 samples. Alternatively drive cycle standards
could be used for training also. The IT2 MFs represent
the distribution of our data and the FOU catches the
sensor noises, uncertainties of the driver’s behaviour
and traffic situations, etc. In case of high sampling
rate the signal is resampled s(x) = 1

100 in order to
fit shorter universe. The velocity range is divided into
seven inequally sized regions according to linguistic
variables; extremlyslow, veryslow, slow,medium,
fast, very fast, extremely fast (Fig. 3). Each of
them is represented by an IT2 set:

ρ(k)v = (Ã1, ..., Ãk), k=1,...,7. (2)

The acceleration data is also separated into seven dis-
tinct regions which are approximated by IT2 functions
built similarly. The sets are:

ρ(l)a = (B̃1, ..., B̃l), l=1,...,7 (3)

The ranges’ histograms are approximated by Interval-
Type 2 fuzzy membership functions (Fig. 4).

The upper memebership functions is a spline-
based Π-shape function that is evaluated by the vector
x. Its shape is controlled by four parameters; a and
d is responsible for the foot while parameters b and
c controls the shape of the function’s shoulder. The

Figure 3: Regions of velocity

Figure 4: Extraction of UMFs from data

formula of the µUMF is defined as follows:

Π(x; a, b, c, d) =



0 x ≤ a
2(x−ab−a )2 a ≤ x ≤ a+b

2

1− 2(x−bb−a )2 a+b
2 ≤ x ≤ b

1 b ≤ x ≤ c
1− 2(x−cd−c )

2 c ≤ x ≤ c+d
2

2(x−dd−a )2 c+d
2 ≤ x ≤ d

0 x ≥ d
(4)

The lower membership function is a Gaussian 2 mem-
bership function that approximates the histogram re-
duced by eliminating the salient components. This is a
combination of two Gaussian membership functions.
Each of them depend on two parameters. The func-
tions are used with the appropriate standard deviation
σ and mean m values as follows:

µLMF = f(x;σ,m) = e
−(x−m)2

2σ2 . (5)

The left side of the function is defined by σ1 and m1

while the right curve is defined by σ2 and m2. The
resulted IT2 membership function Ã1 for region ρ(1)v
can bee seen in Fig.5.
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Figure 5: IT2 Membership Functions for velocity be-
fore tuning

2.3.1 Adaptive Tuning
The proposed method aims to allow real-time appli-
cation by introducing adaptive tuning of the model.
The dynamically changing behaviour requires contin-
uous updates in the model in order to obtain precise
prediction of the future velocity value. The member-
ship functions are continuously tuned using the train-
ing data collected during the driving time. After the
system has learned the drivers model starts the pre-
diction. Since we perform in the time domain, this
method provides efficient results independent of the
type of contaminating noise. On the measured data
an M long w sliding window is applied. The model-
ing starts with an experimentally predefined imprecise
model using averaged driving cycle data of urban en-
vironment. The upper bound of the kth velocity range
is denoted by rk = rk−1 + dk, in which dk is the cov-
ered velocity range. The algorithm at first counts the
local maxima in the instantaneous sliding window and
stores in vector lmax. If the number of local maxima
in kth range lρ

k
v
max ≤ δ then range ρkv is selected for

alteration as follows:

if γ ≥ dk
2
then

r̃k = rk−1 +
γ

2
+ dk −

γ

2

(6)

in which γ = mean(l
ρkv
max). Afterwards, the UMF

and LMF parameters are modified according to the
histogram evaluated from r̃k.The predefined functions
(Fig. 5) after tuning can be seen in Fig. 6

2.3.2 The Inference Engine
The important part that influence the quality of the re-
sult is the interference strategy which most depends
on the proper rules and evaluationo. The antecedent
incorporates the velocity and its adherent acceleration
input. The inference engine is formulating the map-
ping from a given input to an output using IT2 system
and provides the information on which decisions can
be made. The fuzzy implication x → y is expressed

Figure 6: IT2 Membership Functions for velocity af-
ter tuning

as a fuzzy relation R, since the rules are given in the
following form:

Ri = IF v(ti) is Ãk AND v(ti−1) is Ãk

AND a(t) is B̃l THEN v(ti+1) is Ã,

i = 1, ..., q

(7)

in which Ãk and B̃l are the antecedents and Ã is the
consequent of the ith rule. In this paper we consider a
fifth order forecaster (n = 5). The rule base is built by
assigning an IT2 set of acceleration for all the veloc-
ity input membership functions and for them an out-
put velocity Ã is defined. The inference is evaluated
by using product operator for both the UMF and LMF.
Once a rule is fired the inference engine produces the
output. For the inference the evaluated sets are aggre-
gated by a product t-norm. Subsequently a simplified
center of set type-reduction is performed [11]. After,
the conventional CoG (Centre of Gravity) defuzzifi-
cation method is applied for obtaining a crisp output
value.

3 Simulation Results
The proposed method has been tested through sim-
ulation investigatoins in Matlab7. First we investi-
gated the performance of the IT2FS subsequently we
tested the performance of the adaptive version. The
results of the velocity profile prediction performed on
the validation set of the not adaptive one is displayed
in Fig.7. The performance of the adaptive IT2FS can
be seen in Figs.8-9

The performance has been evaluated by the met-
rics below. The mean absolute error (MAE), mean
square error (MSE) and root mean square error
(RMSE) are computed as:

MAE =

s∑
t=1

|vt − v̂t|/s, (8)
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Figure 7: The measured v(t) (black) and predicted
v̂(t) (red) velocity profile before the tuning

Figure 8: The measured v(t) (black) and predicted
v̂(t) (red) velocity profile with the adaptive IT2FS

Figure 9: The measured v(t) (black) and predicted
v̂(t) (red) velocity profile using the tuned model

MSE =
s∑
t=1

(vt − v̂t)2/s (9)

RMSE =

√√√√ s∑
t=1

(vt − v̂t)2/s, (10)

Table 1: Prediction errors.
e1 e2

MAE 0.9034 0.0927
MSE 1.0908 0.0122

RMSE 1.0444 0.1107
Abs max error 3.997 2.0601

The results are collected in Table 1. in which e1 =
vt − v̂t stands for error of the non-adaptive case,
e2 = vt − v̂t represents the adaptiveIT2FS’s error.

The computational results support the theoreti-
cally expected advantages of the method in connec-
tion with the modeling errors, sensor uncertainties and
measurement noises. However, further improvement
could be achieved by higher resolution of the velocity
ranges and by applying a higher number of MFs. The
results are encouraging and should be validated by a
larger sample size.

4 Conclusions
This paper presents an Adaptive Interval-Type-2
Fuzzy System for predicting velocity profile in associ-
ation with individual driver behaviour. The advantage
of the proposed method is that the IT2 fuzzy modeling
allows dealing with the uncertainties of the driver be-
haviour and uncertainties due to measurements noises,
traffic situations, etc., simultaneously. The IT2FS em-
ploys a Mamdani-type IT2 fuzzy reasoning system in
which the fuzzy membership functions are obtained
directly from real driving data. The results provided
in the previous sections show that the IT2FS is a suit-
able and efficient tool for driver model building and
velocity profile predictions. Results have shown that
by introducing adaptivity the prediction error can be
significantly reduced. Its easy inmplementability al-
lows its real time application and suitable for modern
driving assistant systems providing considerable ben-
efits e.g. for energy demand management. In conclu-
sion our work represents a viable alternative of con-
ventional time series prediction applicable .
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